Etiology
Most cases are sporadic and felt to be multifactorial in origin. Familial clustering of polysplenia syndrome has been reported and supports an autosomal recessive mode of inheritance4,5. A single recessive gene in a mouse model has been demonstrated to result in cardiovascular anomalies and situs inversus28. One report of asplenia and polysplenia complex in siblings with situs inversus totalis in a parent supports autosomal dominant inheritance7. Another report of two first cousins with polysplenia suggests that inheritance may follow a pattern of autosomal dominance with incomplete penetrance6. A recent report of 12 fetuses with cardio-splenic syndrome who had prenatal karyotyping revealed no cases of aneuploidy29.
Pathogenesis
Although described separately, the cardiosplenic syndromes are probably best considered as different manifestations of the same embryopathy12,14,18,24,30. The human spleen first appears embryologically at approximately 36 days gestation. Septation of the conotruncus, lobulation of the lung and rotation of the gut all occur at that time as well. It has been proposed that a teratogenic insult during the 31st-36th days could account for the constellation of defects observed8-11.
Another proposal suggested that the abnormal expression of right- or left-isomerism leads to an abnormality or absence of contralateral structures, although no explanation of the actual mechanism for this was offered12. The presence of the cardiosplenic syndrome in a case of hypoplastic ectopic spleen and attenuated splenic artery led Monie to conclude that dysgenesis of the spleen is a secondary result of a mechanical vascular disturbance resulting from isomerism13.
Finally, Opitz and Gilbert proposed the concept of the midline as a “developmental field” in which the development of visceral laterality is determined in a controlled, spatially and temporally coordinated manner 14.
Pathology—clinical features
Acyanosis at birth is typical of polysplenia, whereas cyanosis is the rule in asplenia due to pulmonary outflow obstruction from stenosis or atresia. The presence of Howell-Jolly or Heinz bodies in peripheral erythrocytes is strongly suggestive of splenic absence12. There is no similar clinical marker for polysplenia. Angiocardiographic, echocardiographic, and radiologic techniques allow for thorough, non-surgical neonatal assessment of the characteristic anomalies of polysplenia syndrome.
Prognosis
Polysplenia has a somewhat better prognosis than asplenia, given that its cardiac anomalies are typically less complex. In a review of 146 cases 50% died by four months and 25% survived beyond five years. Only 10% lived to adolescence23. A combined series of cases of cardiosplenic syndrome undergoing surgical correction or palliation revealed the one-year survival rate to be approximately 50%15. As in our first case, the association of congenital complete heart block with polysplenia has a particularly poor prognosis with mortality exceeding 90%16,17.
Diagnosis
The fetal spleen can usually be detected by 18-20 weeks gestation in the left gastrorenal angle. Nomograms of splenic dimensions have been published31,32. However, the absence of the fetal spleen or the presence of multiple splenules on antenatal ultrasonographic examination is very difficult to perceive. Instead, the prenatal diagnosis of polysplenia is suggested by the association of complex congenital heart disease and situs ambiguous9,16,34,35. The relationship among the inferior vena cava, aorta, and spine displayed by ultrasonography has been shown to be a reliable method to diagnose situs in the newborn21. This technique can be applied to the fetus in utero as well. Normally, the aorta lies to the left of the spine and the inferior vena cava lies to the right. The diagnosis of situs inversus is made when the mirror image of the normal pattern is seen. Right isomerism is suggested when the aorta and vena cava are found together on the same side of the spine. Particular to the diagnosis of polysplenia syndrome is the demonstration of inferior vena caval interruption with azygos continuation21. Fetal echocardiography and color flow Doppler techniques facilitate in utero imaging of vascular structures and can identify anomalies of systemic and pulmonary venous return common in polysplenia16,19,21,33. It has been suggested that an effort should be made to demonstrate the spleen in every fetus with a complex cardiac malformation or dysrhythmia (especially complete heart block)18.
Differential diagnosis
Several entities share characteristics with the polysplenia syndrome. As noted earlier, asplenia syndrome is the most similar related condition of situs ambiguous. The isolated findings of thoracic isomerism and visceral heterotaxia without associated cardiac anomalies have also been described. Dextrocardia or mesocardia refer to the location of the cardiac apex and may not be associated with cardiac disease or abnormalities of corporal situs25. The isolated presence of an accessory spleen has also been described.
Obstetric management
Prior to fetal viability, pregnancy termination can be offered. Delivery in a tertiary care center with immediate access to a pediatric cardiology specialist offers the best opportunity to maximize perinatal outcome.
References
1. Stanger P, Rudolph AM, Edwards JEZ: Cardiac malpositions: an overview based on study of 65 necropsy specimens. Circulation 56:159-172, 1977.
2. Robinson LK, James HE, Mubarak SJ, et al. Carpenter syndrome: natural history and clinical spectrum. Am J Med Genet 20:461-469, 1985.
3. Jones KL. Smith"s Recognizable Patterns of Human Malformation (4th ed.). Philadelphia:W.B. Saunders Co. 370:543-545, 1988.
4. Rose V, Izukawa T , Moes CAF. Syndromes of asplenia and polysplenia: a review of cardiac and non-cardiac malformations in 60 cases with special reference to diagnosis and prognosis. Br Heart J 37:840-852, 1975.
5. Arnold GL, Bixler D, Girod D. Probable autosomal recessive inheritance of polysplenia, situs inversus and cardiac defects in an Amish family. Am J Med Genet 16:35-42, 1983.
6. Chen S, Monteleone PL. Familial splenic anomaly syndrome. J Pediat 91:160-161, 1977.
7. Niikawa N, Kohsaka S, Mizumoto M, et al. Familial clustering of situs inversus totalis and asplenia and polysplenia syndromes. Am J Med Genet 16:43-47, 1983.
8. Ivemark BI. Implications of agenesis of the spleen on the pathogenesis of conotruncus anomalies in childhood: an analysis of the heart malformations in splenic agenesis syndrome, with fourteen new cases. Acta Pediatr 44:1-110, 1955.
9. Gilbert EF, Nishimura K, Wedum BG. Congenital malformations of the heart associated with splenic agenesis, with a report of five cases. Circulation 17:72-86, 1958.
10. Majeski JA and Upshur JK. Asplenia syndrome: a study of congenital anomalies in 16 cases. JAMA 240:1508-1510, 1978.
11. Polhemus DW, Schafer WB. Congenital absence of the spleen; syndrome with atrioventricularis and situs inversus: case reports and review of the literature. Pediatrics 16:696-708, 1952.
12. Van Mierop LHS, Gessner IH, Schiebler GL. Asplenia and polysplenia syndromes. Birth Defects: Orig Art Series 8:36-44, 1972.
13. Monie IW. The asplenia syndrome: an explanation for absence of the spleen. Teratology 25:215-219, 1982.
14. Opitz JM, Gilbert EF. CNS anomalies and the midline as a “developmental field”. Am J Med Genet 12:443-455, 1982.
15. Gutgesell HP, Garson A, Park I, et al. Prognosis for the neonate and young infant with congenital heart disease (Abstr). Pediatr Cardiol 2:168-169, 1982.
16. DiSessa TG, Emerson DS, Felker RE, et al. Anomalous systemic and pulmonary venous pathways diagnosed in utero by ultrasound. J Ultrasound Med 9:311-317, 1990.
17. Garcia OL, Mehta AV, Pickoff AS, et al. Left isoinversion and complete atrio-ventricular block: a report of six cases. Am J Cardiol 48:1103-1107, 1981.
18. Chitayat D, Lao A, Wilson RD, et al. Prenatal diagnosis of asplenia/polysplenia syndrome. Am J Obstet Gynecol 158:1085-1087,1988.
19. Mauser I, Deutinger J, Bernaschek GZ: Prenatal diagnosis of a complex fetal cardiac malformation associated with asplenia. Br Heart J 65:293-295, 1991.
20. Ferencz C, Rubin JD, McCarter RJ, et al: Congenital heart disease: prevalence at livebirth. Am J Epidemiol 121:31-36,1985.
21. Huhta JG, Smallhorn JF, Macartney FJ: Two-dimensional echocardiographic diagnosis of situs. Br Heart J 48:97-108,1982.
22. Silverman NH, Globus MS: Echocardiographic techniques for assessing normal and abnormal fetal cardiac anatomy. J Am Coll Cardiol 5(Suppl):20S-29S,1985.
23. Peoples WM, Moller JH, Edwards JE: Polysplenia: a review of 146 cases. Pediatr Cardiol 4:129-137,1983.
24. Moller JH, Nakib A, Anderson RC, et al: Congenital cardiac disease associated with polysplenia: a developmental complex of bilateral “left-sidedness”. Circulation 36:789-799,1967.
25. Winer-Muram HT, Tonkin ILD: The spectrum of heterotaxic syndromes. Radio Clin North Am 27:1147-1170,1989.
26. Elliott LP, Cramer GC, Amplatz K: The anomalous relationship of the inferior vena cava and abdominal aorta as a specific angiocardiographic sign in asplenia. Radiology 87:859-863,1966.
27. Ruttenberg HD, Neufeld HN, Lucas RV, et al: Syndrome of congenital cardiac disease with asplenia; distinction from other forms of congenital cyanotic cardiac disease. Am J Cardiol 13:387-406,1964.
28. Layton WN: Heart malformations in mice homozygous for a gene causing situs inversus. Birth Defects: Orig Art Series 14:277-293, 1978.
29. Brown DL et al: Predicting aneuploidy in fetuses with cardiac anomalies: significance of visceral situs and non-cardiac anomalies (Abstr). J Ultrasound Med 11:S39,1992.
30. Zlotogora J, Elian E: Asplenia and polysplenia syndromes with abnormalities of lateralization in a sibship. J Med Genet 18:301-302,1981.
31. Schmidt W, Yarkoni S, Jeanty P, et al: Sonographic measurements of the fetal spleen: clinical implications. J Ultrasound Med 4:667-672,1985.
32. Hata T, Aoki S, Takamori H, et a:. Ultrasonographic in utero identification and measurement of the normal fetal spleen. Gynecol Obstet Invest 23:124-128,1987.
33. DeVore GR, Steiger RM, Larson EJ: Fetal echocardiography: the prenatal diagnosis of a ventricular septal defect in a 14-week fetus with pulmonary artery hypoplasia. Obstet Gynecol 69:494-497, 1987.
34. Shenker L, Reed KL, Marx GR et al: Congenital heart block and cardiac anomalies in the absence of maternal connective tissue disease. Am J Obstet Gynecol 157:248-53, 1987.
35. Machado MV, Crawford DC, Anderson RH et al: Atrioventricular septal defect in prenatal life. Br Heart J 59:352-5, 1988.