Fig. 4: Left: Three-dimensional reconstruction image of the larynx and trachea at necropsy, viewed from 30 degree anterolaterally. (PC - 3D - 3D Reconstruction Software, Jandel Scientific, California). Right: Sagittal section through larynx. H & E x 10. Arrow, cartilage bar (cricoid) occluding airway.
The other laryngeal cartilages were normal. Histologic examination of the lungs revealed marked interstitial edema and striking distension of the developing airspaces. There was 5ml of serous ascites. The esophagus and other organs were normal.
Fluid aspirated from the trachea contained no detectable epidermal growth factor (epidermal growth factor is known to influence lung development) or IGF-1 (insulin-like growth factor) on radioimmunoassay. It is not known whether, or when, these substances are secreted into lung fluid, since it is rarely available for assessment.
The fetus of their subsequent pregnancy appears normal.
Discussion
Laryngeal atresia is rare, with only 60 reported cases. A case similar to ours, but with tetralogy of Fallot and polyhydramnios, has been diagnosed by ultrasound at 28 weeks" gestation3, and atresia of one mainstem bronchus has been diagnosed at 24 weeks4.
Associated anomalies
Associated anomalies include tracheoesophageal or bronchoesophageal fistula, tracheal agenesis, the VACTERL association, and hydrocephalus with absence of cervical vertebrae1, hypoplastic kidneys, urethral agenesis and skeletal deformities (absent radius, syndactyly).
Recurrence risk
A familial tendency has been reported for partial laryngeal atresia (laryngeal web)2, and an autosomal dominant transmission has been suggested11, but complete atresia is usually sporadic.
Pathogenesis
It has been suggested, by analogy with rat embryology, that the different types of laryngeal atresia (supraglottic plus infraglottic, infraglottic, and glottic) reflect arrest of normal development at different embryologic stages.1
Diagnosis
Production of lung fluid begins early, with a net outward flow through the larynx. Complete obstruction therefore causes retention of lung fluid under pressure, and the lungs become expanded, edematous, and echogenic. In addition, air space development is accelerated5, and the lungs may become hyperplastic6. Appearances may differ (table 1) if there is also a tracheoesophageal fistula or a persistent pharyngo-tracheal duct of sufficient size 5,6, or tracheal agenesis3, but it is not known whether ultrasound can differentiate reliably between these situations or distinguish them from bilateral type III cystic adenomatoid malformation7.
Table 1: Differential diagnosis of laryngeal atresia.
|
Isolated laryngeal atresia
|
Atresia with fistula
|
Tracheal agenesis
|
Fluid tracheogram
|
yes
|
no
|
no
|
Enlarged lungs
|
yes
|
no
|
yes
|
Echogenic lungs
|
yes
|
yes
|
yes
|
Prognosis
Associated hydrops may reflect compression of the lymphatics, the heart or the intrathoracic vessels. Associated polyhydramnios is common. However, hydrops does not predict fetal death in utero. Ascites has been observed to regress in a fetus with laryngeal atresia and tracheoesophageal fistula7, and an association with "prune belly†has been reported8, which we suggest may have been due to transient ascites.
Survival with isolated laryngeal atresia has been described.10 However, although speech may be achievable, complete laryngeal reconstruction for major atresias is not feasible at present, and the parents should be counselled about the need for lifelong tracheostomy. If they request active treatment, appropriate staff and equipment should be available in the delivery room to allow urgent neonatal tracheostomy, with clamping of the umbilical cord delayed until the airway is secured.
Acknowledgment
We are grateful to Dr. Leanna Read of the Child Health Research Institute of South Australia for performing assays on the tracheal fluid.
References
1. Smith II, Bain AD: Congenital atresia of the larynx; a report of nine cases. Ann Otol Rhinol Laryngol 74:338-349, 1965.
2. Baker DC, Savetsky L: Congenital partial atresia of the larynx. Laryngoscope 76:616-620, 1966.
3. Didier F, Droulle P, Marchal C: A propos du depistage antenatal des atresies tracheale et laryngee. Arch Fr Pediatr 47:395-6 1990.
4. McAlister WH, Wright Jr, Crane JP: Mainstem bronchial atresia: intrauterine sonographic diagnosis. AJR 147:364-366, 1987.
5. Wigglesworth JS, Desai R, Hislop AA: Fetal lung growth in congenital laryngeal atresia. Pediatr. Pathol. 7:515-525, 1987.
6. Scurry JP, Adamson TM, Cussen LJ: Fetal lung growth in laryngeal atresia and tracheal agenesis. Aust Pediatr J 25:47-51, 1989.
7. Watson WJ, Thorp JM, Miller RC et al: Prenatal diagnosis of laryngeal atresia. Am J Obstet Gynecol 163:1456-7, 1990.
8. Arizawa M, Imai S, Suehara N: Prenatal diagnosis of laryngeal atresia. Acta Obstet Gynaec Jpn 41:907-910, 1989.
9. Lyon, AJ. Congenital atresia of the larynx in association with prune belly syndrome. J R Army Med Corps 129:118-119, 1983.
10. Holinger PH, Johnson KC, Schiller F. : Congenital anomalies of the larynx. Ann Otol Rhinol Laryngol 63:581-606, 1954.
11. Lewandowski RC, Yunis JJ: Phenotypic mapping in man. In Yunis JJ (ed.): New Chromosomal Syndromes. New York; Academic Press, pp369-94, 1977.