Figure 4: The two main types of cephaloceles: on the left, the sincipital cephaloceles; on the right, the basal cephaloceles.
Discussion
Definition
Anterior cephaloceles are mid- line frontonasal herniations of brain and/or meninges through a skull defect. Often, cephaloceles occur at the sites of the fontanelles (frontal, sphenoidal) or at the cribriform plate of the ethmoid, the foramen cecum, the foramen magnum, or through a suture line7,8. In general, cephaloceles can be further classified into three types, depending on the contents of the herniated sac. The three types are meningocele which contains only meninges, encephalomeningocele which contains brain and/or meninges and encephalomeningocystocele which includes part of the ventricular system as well9,10.
Prevalence
The incidence of all cephaloceles is 0.5:10,000 live births1. The incidence of anterior cephaloceles is higher in Southwest Asia (Thailand) and Russia compared to the incidence in Western Europe and the United States. In some geographical areas the ratio of occipital cephaloceles to sincipital cephaloceles varies from 1:1 to 1:15. In the West, 80% of the cephaloceles are occipital; the other 20% are equally divided among frontal and parietal cephaloceles2-6.
Etiology
Anterior cephaloceles may occur as a sporadic developmental defect, as part of a syndrome or occurring in association with other malformations. Syndromes or malformations which feature an anterior cephalocele include aberrant tissue band, frontonasal dysplasia, absent corpus callosum, clefting, craniostenosis, hypothalamic pituitary dysfunction, meningomyelocele and Robert"s-SC phocomelia syndrome. Cephaloceles have also been reported with several chromosomal syndromes2,11,12.
Embryology
The pathogenesis of anterior cephalomeningoceles is still unclear. A paper written in 1938 summarizes some of the theories which are still valid today7. Already in 1827, Saint Hillaire published an interesting theory attributing this pathology to a faulty adhesion between the dura, the brain and the skin of the cranium, resulting in a maldevelopment of the bony vault and subsequent “outpouring” of the brain. Later on, hydrocephalus was implicated in its pathogenesis, raising the possibility of increased intracranial pressure purporting the lesion. In 1890, Berger was the first to call this lesion “encephalomata”. To somehow shorten the list of authors and the large number of theories on the pathogenesis of this brain pathology, one should review the embryology of the skull and brain.
At the end of the third month, the frontal end and the ethmoid bones are still apart. It has been observed that the cephalocele defects were always smooth and rounded, and clearly punched out. They were never cleft or “split”. This would suggest that the meningeal and brain protrusions existed first and the bony defect was secondary. This also would support the theory that meningeal and brain protrusions occur before the formation of the ethmoid and the nasal septum, around the sixth week of intrauterine life.
It seems that the events leading to the formation of anterior cephalocele must occur quite early in development at around 45-50 days embryonic age. This is the time when the base of the occiput and the sphenoid body develop and assume their normal appearance13.
Pathogenesis
Overdistension of the neural tube occurs with the closure of both the neural groove and anterior neural pore. Adhesion of the anterior neural pore to the overlying tissue and ectoderm occurs for unknown etiological factors. The defect in the mesoderm does not resolve, and the final lesion is established due to the protrusion of the primitive brain and its coverings. The site of the cephalocele depends on the pathway taken through the developing bones. It is believed that intermittent increase in intracranial pressure may further push on the brain tissue and enlarge the lesion. Many feel that cephaloceles are developmental and non-familial and are not necessarily associated with other congenital malformations. The cephaloceles are not confined to man but are found also in lower animals9.
It was postulated that the higher frequency in southwest Asia is due to 1) a defective germplasm which is endemic and inherent in certain races; 2) infections of the mother during the first months of pregnancy; 3) the effect of unknown medication in the first months of pregnancy; and 4) the effect of some unknown inherent dietary factor.
Types
A nasofrontal lesion protrudes through the junction of the frontal and nasal bones. The nasoethmoidal lesion would push through between the ethmoids, the nasal and the frontal process of the maxillary bones. Finally a naso-orbital lesion would emerge through a defect between the frontal and the lacrimal bones. The cephaloceles always occur in the midline sagittal axis of the cranium (fig. 4)6-8,11. Anterior cephaloceles are divided into two main types: the sincipital and the basal defects.
The sincipital cephaloceles are always external lesions which occur near the root of the nose (glabella) and are subdivided into nasofrontal, nasoethmoid and naso-orbital types.
The basal cephalocele is an internal lesion which occurs within the nose, the pharynx, or the orbit. These are subdivided into five types: spheno-orbital, sphenomaxillary, transethmoidal, sphenoethmoidal and sphenopharyngeal.
Diagnosis
The prenatal diagnosis of occipital cephaloceles in the second and third trimester of pregnancy is relatively easy and accurate. But prenatal diagnosis of atypically located lesions (eg., anterior or parietal cephaloceles) or diagnosing these lesions in the first trimester may prove challenging, especially since anterior cephaloceles are rare in the United States.
Since cephaloceles develop very early during fetal development, they will be present at the time of the earliest obtained transvaginal sonography. The earliest sonographic features which may be recognized in the late first trimester are:
· abnormal fetal profile
· discrepancies in the BPD and head circumference measurements
· changes in the sagittal and coronal sections of the face.
These features may be examined and evaluated as early as 9-14 weeks20. Transvaginal scanning allows the use of sagittal and coronal planes that may be difficult to obtain with abdominal scans and allows early assessment. Also, detection of hypertelorism, ocular abnormalities as well as limb defects may be identified at this time.
Prognosis
The prognosis of cephaloceles depends largely on the contents of the cephalocele sac and the presence of other associated abnormalities. Encephalomeningocele or encephalomeningocystocele, in which a large amount of brain tissue is in the herniated structure and which is usually associated with microcephaly, hydrocephaly or other abnormalities, have a poor prognosis. The child dies as a result of complications, and the rare survivors are severely mentally and physically handicapped. Surgical procedures for the repair of anterior cephaloceles have been reported but offer only very limited improvement of facial deformities3,14-17. Yet, it appears from the literature that anterior cephaloceles have a slightly better outcome than other types of cephaloceles. The presence of an isolated malformation, when repaired, does not preclude normal mental and physical development. However, many of the children who have survived suffer cosmetic facial and eye deformities1,3,11,18,19.
Management
Prenatal management of an anterior cephalocele depends largely upon when the lesion is diagnosed. If the lesion is diagnosed early, before 24 weeks gestation, the parents have the option to terminate the pregnancy. If the pregnancy is terminated, every effort should be made to deliver the fetus intact. A karyotype should be obtained, although the association with a karyotypic abnormality is very low. An autopsy should be performed to look for evidence of associated malformations or syndromes which may be familial and therefore affect a future pregnancy. If the parents elect to continue the pregnancy or if the lesion is diagnosed after fetal viability, a detailed ultrasound should be performed to look for associated facial malformations, cleft lip and palate, hypertelorism, as well as microcephaly, hydrocephaly, absence of the corpus callosum, holoprosencephaly, meningomyelocele and other associated malformations. The parents should be counseled that the chance for a good outcome is minimal, and cesarean section for fetal indications is not recommended1.
References
1. Chevernak FA, Isaacson G, Mahoney NJ, et al: Diagnosis and management of fetal cephalocele. Obstet Gynecol 6486-90,1984.
2. Diebler C, Dulac O: Cephaloceles: clinical and neuroradiological appearance. Neuroradiology 25:199-216,1983.
3. Suwanwela C, Hongsaprabhas C: Fronto-ethmoidal encephalomeningocele. J Neurosurg 25:172-182,1966.
4. Hughes GB, Sharpino G, Hunt W, et al: Management of the congenital midline nasal mass: A review. Head Neck Surg 2:222-233,1980.
5. Goldstein RB, LaPidus AS, Filly RA: Fetal cephaloceles: Diagnosis with US. Radiology 180:803-8,1991.
6. Warkany J, Lemire RJ, Cohen MM. Mental Retardation and Congenital Malformations of the Central Nervous System. Year Book Medical Publishers, Chicago, 1981 pp 158-175.
7. Mood GF: Congenital anterior herniations of brain. Ann Otorhinolaryngol 47:391-401,1938.
8. Whatmore WJ: Sincipital encephalomeningoceles. Br J Surg 60:261-70,1973.
9. Harley EH: Pediatric congenital nasal masses. Ear Nose Throat J 70:28-32,1991.
10. Jeanty P, Shah D, Zaleski W, et al: Prenatal diagnosis of fetal cephalocele: A sonographic spectrum. Am J Perinatol 8:144-149,1991.
11. Cohen MM, Lemire RJ: Syndromes with cephaloceles. Teratology 25:161-172,1982.
12. Jones KL: Smith"s Recognizable Patterns of Human Malformation. Fourth Edition. Philadelphia, WB Saunders, 1988, p 710.
13. Rapport RL, Dunn RC, Alhady F: Anterior encephalocele. J Neurosurg 54:213-219,1981.
14. Paller AS, Pensler JM, Tomita T: Nasal midline masses in infants and children. Arch Dermatol 127:362-366, 1991.
15. Soyer P, Dobbelaere P, Benoit S: Case report: Transalar sphenoidal encephalocele. Uncommon clinical and radiologic findings. Clin Radiol 43:65-67,1991.
16. Nyberg DA, Mahony BS, Pretorius DH: Ultrasound of fetal anomalies text and Atlas. Year Book Medical Publishers, Chicago, 1990, p 203.
17. Dodge HW, Love M, Kernohan JW: Intranasal encephalomeningoceles associated with cranium bifidum. Arch Surg 79:87-96,1959.
18. Mealey J, Dzenitis AJ, Hockey AA: The prognosis of encephaloceles. J Neurosurg 2970;32:209-218.
19. Lipschitz R, Beck JM, Froman C: An assessment of the treatment of encephalomeningoceles. East Afr Med J 43;609-619,1969.
20. Timor-Tritsch IE, Monteagudo A, Peisner DB: High frequency transvaginal sonographic examination for the potential malformation assessment of the 9-14 weeks fetus. JCU 2:20:231-23,1991.